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Recently,  all-inorganic  perovskites  have  attracted  atten-
tion  due  to  good  thermal  stability[1−12].  Among  them,  CsPbI3

has the most desirable optical  bandgap (~1.7 eV) for  applica-
tions  in  optoelectronic  devices[13−16].  In  general,  making
black-phase  CsPbI3 film  requires  a  high-temperature  anneal-
ing up to 320 °C[17, 18], which inevitably raises energy consump-
tion.  Though  being  made  at  high  temperature,  the  resulting
black-phase (α or β phase) CsPbI3 film still suffers from an un-
desirable phase transition under ambient conditions[19, 20]. Sev-
eral  strategies  have  been  developed  to  lower  the  annealing
temperature  (90–100  °C)[20−26],  it  is  still  challenging  to  stabil-
ize black-phase CsPbI3 under ambient condition with high hu-
midity and without a tedious annealing process. Herein, we de-
veloped  a  simple  crystal  redissolution  (CR)  strategy  to  make
stable black-phase CsPbI3 film in ambient air with high humid-
ity  and  without  post-annealing.  4-N,N-dimethylamino-4ʹ-Nʹ-
methyl-stilbazolium  tosylate  (DAST)  can  chemically  interact
with  CsPbI3 to  reduce  the  formation  energy  of  black-phase
and  inhibit  CsPbI3 to  undergo  black-to-yellow  phase  trans-
ition.

Fig.  1(a)  shows the CR approach.  By  using the perovskite
precursor  consisting  of  PbI2,  CsI  and  HI,  a  light-yellow  film
was obtained in ambient air,  which is  due to the existence of
both yellow-phase δ-CsPbI3 and PbI2, as evidenced in XRD pat-
tern  (Fig.  1(b))[22].  In  contrast,  by  using  CR-derived  perovskite
precursor  (Fig.  S1),  a  mirror-like  black  CsPbI3 film  was  ob-
tained  even  under  70%  relative  humidity,  which  uniformly
covered  the  entire  substrate  (inset  in Fig.  1(c)).  Compared
with  the  control  sample  (Fig.  1(b)),  there  is  no  PbI2 signal
(12.6°) in XRD pattern (Fig. 1(c))[27], which is due to a more dir-
ect  conversion  and  rapid  self-assembly  from  CsPbI3 crystals
to  CsPbI3 film,  rather  than  the  complicated  competition
among Pb2+,  Cs+,  I– ions  and solvent  molecules[27, 28].  The dif-
fraction  peaks  at  14.98°  and  29.20°  are  the  typical  (100)  and
(200)  planes  of  black-phase β-CsPbI3.  Meanwhile,  the absorb-
ance  of  the  control  film  sharply  declined  after  450  nm,  while
CR-derived  black  CsPbI3 film  presents  an  absorption  onset  at
733 nm (Fig. S2), which agrees with the previous report on β-
CsPbI3 film[12].  For  the  control  film,  inferior  surface  coverage
was  observed  (Figs.  S3(a)  and  S3(c)).  And  CR-derived  film
shows better surface coverage (Figs. S3(b) and S3(d)).

Black-phase  CsPbI3 film  gradually  degraded  and  under-
went phase transition when stored in air for one week, as evid-
enced by the gradual decrease of absorbance (Fig. S4). To fur-
ther  improve phase stability  and optoelectronic  properties  of
β-CsPbI3 film  prepared  by  CR  strategy,  we  introduced  the
DAST  additive  (Fig.  1(d)).  DAST  not  only  maintains  black-
phase CsPbI3 structure, but also slightly enhances the crystallin-
ity  and  promotes  the  crystal  growth  orientation  along  (100)
and  (200)  planes  (Fig.  S5).  DAST  also  helps  to  reduce  the
grain  sizes  (100–200  nm)  and  improve  the  surface  coverage
of the resultant β-CsPbI3 film (Fig. S6). DAST molecules can in-
teract with CsPbI3 via robust bidentate coordination, thus im-
peding  grain  growth  due  to  the  steric  hindrance  effect
(Fig.  1(e))[11].  The  interaction  between  DAST  molecule  and β-
CsPbI3 was  studied  by  FTIR  (Fig.  S7).  The  pure  DAST  shows
characteristic  signals  at  1023  and  1666  cm–1,  corresponding
to  C=C  bond  and  benzene  group,  respectively.  DAST-modi-
fied  CsPbI3 film  also  shows  similar  peaks,  but  with  a  slight
shift,  suggesting possible  interaction between zwitterion and
ions  in  perovskites[20].  The  DAST-modified  CsPbI3 film  was
stored at  room temperature  in  air  with  a  relative  humidity  of
~35%.  There  was  no  obvious  degradation  observed  even
after one month, as proved by XRD pattern (Fig. 1(f)).

In  short,  by  using  the  CR  strategy,  we  successfully  stabil-
ized the black-phase CsPbI₃ film in ambient air with >70% hu-
midity.  DAST  can  further  stabilize  the  black  phase.  The  ap-
proaches  in  this  work  will  be  useful  for  developing  efficient
perovskite solar cells. 
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Supplementary  materials  to  this  article  can  be  found  on-
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Fig. 1. (Color online) (a) The ambient air-processed black-phase CsPbI3 film via CR strategy. The XRD patterns of the control (b) and CR-derived
CsPbI3 film (c). Note: the hash key represents the signal from δ-CsPbI3; the square symbol represents the signal from PbI2; the diamond symbol rep-
resents the signal from β-CsPbI3;  the circular pattern represents the signal from CsI and the asterisk represents the signal from FTO glass sub-
strate. (d) The structure of DAST. (e) Schematic for the molecular interaction and CsPbI3 film formation. (f) The XRD pattern for DAST-modified
CsPbI3 film after being stored in air for one month.
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